Hitchhiker Drone Lands on Moving Vehicles Using Advanced Tracking and Suction Cups

Check out this short video of an innovative UAS called the Hitchhiker Drone that uses Advanced Tracking and Suction Cups to land on the back of a moving vehicle.

A new drone named Hitchhiker, designed by Sensen Liu at Shanghai Jiao Tong University’s School of Mechanical Engineering, can land on inclined, moving surfaces like the back of a moving car.

“Our interest stems from the fact that many structures—including buildings, bridges, and ground vehicles—feature inclined surfaces that are difficult for traditional drones to land on,” Liu explains to IEEE Spectrum. “By creating drones with this capability, we can leverage these surfaces as landing sites and expand the possibilities for the use of 无人机技术.”

Liu’s team recognized the potential of designing drones that can land on inclined surfaces of buildings, bridges, and vehicles, thus expanding the possibilities for drone applications. 

Hitchhiker Drone in action

YouTube #!trpst#trp-gettext data-trpgettextoriginal=154#!trpen#视频#!trpst#/trp-gettext#!trpen#

The researchers were particularly interested in drones capable of landing on moving cars, allowing for real-time environmental analysis while the vehicle is in motion.

The Hitchhiker drone can conserve energy by latching onto the side of a car after completing its scouting mission, delaying the need to swap or recharge its batteries. 

Under the supervision of Associate Professor Wei Dong, Liu, and his colleagues developed a trajectory planning algorithm that accounts for each rotor’s individual thrust on the quadcopter. The drone’s position and attitude are analyzed using a two-stage tracking approach.

Equipped with self-sealing suction cups in a wheel configuration, Hitchhiker can latch onto surfaces at steep inclines. This design increases the likelihood of contact with the landing surface, compensating for any errors in the drone’s trajectory planning.

The researchers tested Hitchhiker by attaching an adjustable surface to a car, angling it at various inclines, and assessing the drone’s ability to land on the surface while the car was in motion. 

The drone demonstrated a success rate of 70% or higher, landing on surfaces moving at speeds up to 1.07 meters per second and inclinations up to 90 degrees. The self-sealing suction cups increased the success rate by 45% compared to conventional suction cups.

Interestingly, the drone had a higher success rate when landing on surfaces moving backward rather than forward. Dong suggests this could be due to the alignment of attitude and velocity control inputs, minimizing errors in the drone’s grip on the surface.

A current limitation of Hitchhiker is its reliance on an external positioning camera. The research team plans to develop onboard vision-based algorithms for targeting and positioning systems, even during large attitude flight operations. They are also exploring commercialization opportunities to bring this innovative technology to the market.

“To accomplish this, we plan to develop new, onboard vision-based algorithms that leverage advanced targeting and positioning systems, even during large attitude flight operations,” says Dong. “We are excited about the potential of this technology and are actively exploring various commercialization opportunities to bring it to market.”


了解 DroneXL.co 的更多信息

订阅后即可通过电子邮件收到最新文章。

发出你的声音

拟议的立法威胁到您使用无人机娱乐、工作和安全的能力。无人机 无人机宣传联盟 加入我们,告诉您的民选官员保护您的飞行权利。

无人机宣传联盟
立即行动
在谷歌新闻上关注我们!

获取第 107 部分证书

Pass the Part 107 test and take to the skies with the 试点研究所.我们已帮助数千人成为飞机和商用无人机飞行员。我们的课程由行业专家设计,帮助您通过 FAA 考试,实现梦想。

试验研究所

Copyright © DroneXL.co 2025. All rights reserved. The content, images, and intellectual property on this website are protected by copyright law. Reproduction or distribution of any material without prior written permission from DroneXL.co is strictly prohibited. For permissions and inquiries, please 联系我们 first. DroneXL.co is a proud partner of the 无人机宣传联盟. Be sure to check out DroneXL's sister site, EVXL.co, for all the latest news on electric vehicles.

美国联邦贸易委员会:DroneXL.co 是亚马逊联营公司,使用联营链接可从符合条件的购买中获得收入。我们不会出售、分享、出租或向您发送垃圾邮件。

Haye Kesteloo
Haye Kesteloo

Haye Kesteloo is a leading drone industry expert and Editor in Chief of DroneXL.coEVXL.co, where he covers drone technology, industry developments, and electric mobility trends. With over nine years of specialized coverage in unmanned aerial systems, his insights have been featured in The New York Times, The Financial Times, and cited by The Brookings Institute, Foreign Policy, Politico and others.

Before founding DroneXL.co, Kesteloo built his expertise at DroneDJ. He currently co-hosts the PiXL 无人机表演 on YouTube and podcast platforms, sharing industry insights with a global audience. His reporting has influenced policy discussions and been referenced in federal documents, establishing him as an authoritative voice in drone technology and regulation. He can be reached at haye @ dronexl.co or @hayekesteloo.

文章: 4874

发表评论

这个站点使用 Akismet 来减少垃圾评论。了解你的评论数据如何被处理

zh_CNChinese